A Practical Algorithm for
Making Filled Graphs Minimal *

Jean R S Blair Pinar Heggernes Jan Arne Telle
U S Military Academy Department of Informatics
West Point, NY, USA University of Bergen, Norway
dj4693@trotter.usma.edu pinar@ii.uib.no telle@ii.uib.no
Abstract

For an arbitrary filled graph G of a given original graph G, we con-
sider the problem of removing fill edges from G in order to obtain a graph
M that is both a minimal filled graph of G' and a subgraph of G*. For
G™ with f fill edges and e original edges, we give a simple O(f(e+ f)) al-
gorithm which solves the problem and computes a corresponding minimal
elimination ordering of G. We report on experiments with an implemen-
tation of our algorithm, where we test graphs G corresponding to some
real sparse matrix applications and apply well-known and widely used or-
dering heuristics to find G*. Our findings show the amount of fill that is
commonly removed by a minimalization for each of these heuristics, and
also indicate that the runtime of our algorithm on these practical graphs
is better than the presented worst-case bound.

1 Introduction

For any graph G and an ordering a of its vertices, there is an associated set of
fill edges that, when added to G, results in a chordal graph (G;a) called the
filled graph (see Section 2 for all definitions.) The problem of finding orderings
of the vertices that produce low fill has been studied by researchers in many
areas of computer science, e.g. in the solution of sparse symmetric systems of
linear equations [13, 16, 17, 18, 19], data-base management systems [1, 21],
knowledge-based systems [9, 12], and computer vision [5]. The problem remains
an important research topic.

In a central 1976 paper Rose, Tarjan, and Lueker [20] gave an algorithm
which finds a minimal fill ordering of a graph G in O(ne) time, where n and e
are respectively the number of vertices and edges in G. To date, this algorithm,
which is called LEX-M, has the best known running time for finding a minimal
filled graph of an arbitrary graph. An efficient parallel algorithm for the same
problem is given by Dahlhaus and Karpinski in [7]. Yannakakis showed in
[22] that finding the minimum fill for an arbitrary graph is N'P-hard. Several
heuristics have been proposed for finding elimination orderings producing low
fill. The two most famous and practically useful methods are called minimum
degree and nested dissection (see [10] for a survey).

Given a graph G and an arbitrary ordering « of its vertices, we consider the
problem of finding a graph M that is both a minimal chordal supergraph of G

*This research was supported in part by the Research Council of Norway, and was con-
ducted while the first author was visiting the University of Bergen, Norway.

and a subgraph of the filled graph (G;«a). We also find a related minimal or-
dering B where (G;8) = M, so that M is a minimal filled graph of G. Minimal
orderings are desirable in practice since any perfect elimination ordering of the
resulting filled graph, when applied to the original graph, produces the same
filled graph, and hence the planned data storage scheme is not disturbed. This is
the case, for example, in sparse matrix computations, where perfect elimination
orderings of the filled graph, e.g. post orderings of the corresponding elimina-
tion tree (see [15]), are usually found to achieve better properties for further
computations. In other words, if 8 is a minimal ordering of a graph G then for
any perfect elimination ordering « of (G;) we have (G;v) = (G;), and this
property does not hold for elimination orderings in general. In particular, we
show in Section 3 that if an ordering « is not minimal, then there always exists
a perfect elimination ordering vy of (G; @) such that (G;~) is a strict subgraph
of (G;a).

The problem we consider is motivated by the following two facts: 1. Minimal
orderings are not necessarily close to minimum in general, and lower fill is usu-
ally achieved by practical heuristic algorithms like minimum degree and nested
dissection. 2. These famous heuristic algorithms usually produce non-minimal
fill, and minimal fill is desirable in practice as explained above. Therefore, a
suitable approach is to first apply a heuristic algorithm to find a non-minimal
low fill ordering o and then run our algorithm to remove redundant fill until the
remaining fill is minimal.

The main contributions of this paper are two-fold: First, we develop an
O(f(e + f)) time algorithm that, given G and «, based on our Theorem 3.8
greedily considers fill edges for removal, in the reverse order to that in which
they were introduced, and produces an ordering 3 such that (G;) is minimal
and is a subgraph of (G;a). Here, f and e are respectively the number of
fill edges in (G;a) and the number of edges in G, i.e. (G;a) has f + e edges
total. Second, we have implemented our algorithm in FORTRAN9O and we report
on experiments where we take our graphs G from the Harwell-Boeing matrix
collection and apply the minimum degree and nested dissection heuristics to
find @. Our findings indicate that minimum degree indeed finds a minimal fill
in many cases, while for nested dissection we are more often able to remove
a substantial number of fill edges with our algorithm. To our knowledge, this
is the first time minimality properties of these famous heuristics are confirmed
experimentally. Furthermore, the worst-case time complexity O(f(e + f)) of
our algorithm depends on structural properties of the filled graph, and our tests
indicate that this worst-case bound is usually not met.

A preliminary version [2] of this paper was presented at the Fifth Scandina-
vian Workshop on Algorithm Theory in 1996. Subsequently Dahlhaus presented
in [6] an O(ne) algorithm to solve the same problem. These two algorithms thus
have the same worst-case asymptotic time complexity when the fill is linear in
the number of vertices, i.e. when f = ©(n), while O(f(e + f)) wins if f = o(n)
and O(ne) wins if f = w(n). Our tests indicate that there are many practical
matrices where indeed f = O(n).

The paper is organized as follows. Section 2 formally defines terms used in
the paper. Section 3 characterizes redundant fill edges. The new algorithm and
its proof of correctness are found in Section 4 with an analysis of the time com-
plexity. Section 5 contains numerical results of our tests concerning the amount
of redundant fill removed and the runtime of our implementation compared to
that of minimum degree and nested dissection. The paper is concluded with
some final remarks in Section 6.

2 Definitions and Notation

We start with some standard graph terminology. We consider undirected, simple
graphs. For a graph G, the vertex and edge sets are denoted by respectively
V(G) and E(G). Ng(v) is the set of neighbors of v in G. A path from v;
to vy is a sequence of vertices vy, vs,..., v that are connected by the edges
U1V, V23, ..., Up_1V). We also use v; — vy, to denote a path from v; to v,. A
cycle is a path whose first and last vertices are the same. An edge in G is called
a chord of a cycle if it joins two nonconsecutive vertices on the cycle. A graph is
chordal if every cycle of length at least four has a chord. For a set S of vertices
in G, the subgraph of G induced by S is denoted by G[S]. The graph G\ S
is the graph G[V(G) \ S]. For a set K of edges in G, the graph G \ K is the
result of removing the edges in K from G. A supergraph of G is a graph which
contains G as a subgraph.

For a graph G with |[V(G)| = n, an elimination ordering of G is a bijection
a:V(G) & {1,2,..,n}. For ease of presentation, we will also refer to o as a
sequence, o = v1,V3,...,0, = & 1(1),a"1(2),...,a”1(n). Thus v; denotes the
vertex v such that a(v) = 1.

Associated with «a is a sequence of supergraphs of G, defined as follows.
Go =G, and for 1 < i < n, G, is the graph obtained by adding edges to G;—; so
that all vertices in Ng, ,(vi) N {viy1,...vn} are pairwise adjacent. This step is
called the elimination of vertex v;, and the whole process of obtaining G,, from
G is called the elimination process. Note that vertices are not removed from
the graph: V(G) = V(G;), 1 < i < n. Usually, the elimination process and
the graphs G; are defined such that vertex v; is removed after its elimination
(thereby the term elimination). However, for our purposes and algorithm, the
non-shrinking graphs G; defined here are more appropriate. The new edges
added are called fill edges, and F; = E(G;) \ E(G;—1) is the set of fill edges
created by the elimination of v;. We use C; to denote the resulting clique
induced by w; and its higher numbered neighbors. The graph G, is the filled
graph of G for elimination ordering . We also use (G;) to denote the filled
graph G,,. All filled graphs are chordal.

An elimination ordering a on G is minimal if the resulting (G; &) is a minimal
chordal supergraph of G. In other words, no strict subgraph of (G;) containing
G is chordal, equivalently, for no ordering v is (G;) a strict subgraph of (G; «).
Then (G;a) is also referred to as a minimal filled graph of G. An elimination
ordering & on G is minimum if no other elimination ordering 8 on G can produce
a filled graph with fewer edges than (G;«). Minimum orderings are, of course,
minimal.

A vertex is simplicial in a graph G if its neighbors induce a clique. Note that
v; is simplicial in G;—1[{v;, ..., v, }] if and only if F; = (. An elimination ordering
on G is perfect if no fill edges are created, that is, if F; = () for 1 <4 < n. Chordal
graphs are exactly the class of graphs that have perfect elimination orderings.

3 Greedy Removal of Redundant Fill Edges

In this section we develop some properties of fill edges related to the order of
their introduction, with the goal of finding an algorithm to remove redundant
fill edges. The following result from [20] gives another characterization of fill
edges.

Lemma 3.1 [20] Let G be a graph and o an elimination ordering of its vertices.
Then wv is an edge of (G;a) if and only if wv € E(G) or there exists a path

U = UQ, UL, Uk+1 = U in G such that, for 1 < i < k, we have a(u;) <

min{a(u), a(v)}.

The same paper also gives the following alternative characterization of minimal
elimination orderings.

Theorem 3.2 [20] Let G be a graph and a an elimination ordering of its ver-
tices. Then a is a minimal elimination ordering if and only if each fill edge is
the unique chord of a 4-cycle in (G;a).

We will need the following corollary.

Corollary 3.3 Let G be a graph and o = vy, ...,v, be an elimination ordering
of its vertices. If a fill edge uv € F;, created by elimination of v;, is the unique
chord of a 4-cycle in (G; @) then uv is the unique chord of a 4-cycle u,v;,v,z,u
in (G;a) with a(z) > i,a(u) > i and a(v) > i.

Proof. Let u,y,v, z,u be a 4-cycle of (G; @) in which ww is the only chord. Since
wv is created by elimination of v; we must have a(u) > i, a(v) > i, a(y) > i
and a(z) > i. If either y = v; or £ = v; we are done. If this is not the case,
note that either yv; or zv; is not an edge of (G; a) since otherwise zy would be
a fill edge. As u and v are both neighbors of v;, we can find a 4-cycle as stated
in the corollary. O

Observe that Theorem 3.2 and Corollary 3.3 can be used to easily detect
whether a given elimination ordering is minimal.

Definition 3.4 Let Gt be a chordal supergraph of a graph G. A candidate edge
is an edge uwv € E(GT) \ E(G) which is not the unique chord of any 4-cycle in
G+.

Since removing a single edge from a chordal graph results in either a chordal
graph or a graph with a chordless 4-cycle, it is clear that removing any candidate
edge cannot destroy chordality. The following result is implicit in [20].

Fact 3.5 [20] A non-minimal chordal supergraph Gt of a graph G has at least
one candidate edge. Any candidate edge can be removed without destroying
chordality.

Thus, if (G;a) is not minimal, then there exists another ordering « such
that (G;~y) has at least one edge less than (G;a). Furthermore, before we
continue with the results that constitute the main basis of our algorithm, we
show that 7 can always be chosen among perfect elimination orderings of (G;).
As mentioned in the introduction, this constitutes a further motivating factor
for finding minimal orderings.

Lemma 3.6 For any non-minimal ordering o of a graph G, there is a perfect
elimination ordering v of (G;) such that (G;7y) is a strict subgraph of (G;).

Proof. Let uv be the last introduced fill edge that is a candidate edge in (G; @),
with a = vy, ...,v,. In other words, if uv € F; then there are no candidate edges
in Fj, where ¢ < j. Let v; be the vertex whose elimination introduced the
fill edge uv. Consider v; and its higher numbered neighbors in (G;a); these
induce a clique C; as explained in the previous section. Since uv is a candidate
edge, every vertex v;, with j > 4, that is adjacent to both u and v must also
be adjacent to v;, and thus be a part of the clique C;. Consequently, the only
vertices whose elimination could lead to the creation of the fill edge wv all belong

to C;. Otherwise uv would have been created before the elimination of v;. In
[19] Rose shows that any clique can be eliminated last in a perfect elimination
ordering of a chordal graph. Let 7 be a perfect elimination ordering of (G;)
where the vertices of C; are eliminated last. In addition let u and v be eliminated
last among the vertices of C;. Applying « on the original graph G will not create
the fill edge uwv, and since it is a perfect elimination ordering of (G;«), it will
not result in any fill that is not in (G;«). Thus, (G;~y) has at least one edge
less than (G;a) and is a strict subgraph. O

Fact 3.5 gives an idea for finding a minimal filled graph by removing fill edges
from a filled graph: repeatedly remove candidate edges until no candidate edges
remain. Note that the proof of Lemma 3.6 provides an algorithm for doing this:
Since at least one candidate edge is removed by the described perfect elimination
ordering of the filled graph, the same procedure can be repeated for the resulting
graph recursively until a minimal filled graph is reached. However, this is a time
consuming approach, and Lemma 3.6 is merely meant as a theoretical motivation
for finding minimal orderings.

Following Fact 3.5, we will describe a method where fill edges are examined
for candidacy and removed if possible. Unfortunately, the set of candidate edges
changes as edges are removed, with new candidate edges being introduced and
old candidate edges ceasing to be candidates. Therefore, if we are to remove the
candidate edges in an arbitrary order, each fill edge might have to be checked
several times for candidacy. For a simple example, consider the path on 4
vertices Py with edges ab, bc, cd and elimination order b, ¢, d, a creating the fill
Fy = {ac} and F; = {ad}. The fill edge ac is not a candidate for removal but ad
is. However, after removing ad the fill edge ac becomes a candidate for removal.

This non-monotonicity property of the set of candidate edges seems to be
the main obstacle in obtaining an efficient implementation of this algorithm. As
we show below, we can partially avoid this by processing fill edges in the reverse
fill order of that in which they were introduced. In particular, the following
strategy will produce a minimal chordal supergraph:

for i = n downto 1 do
while there is a candidate edge in F; do remove it from the filled graph;

We first give a lemma and then a theorem that will provide the basis for the
correctness of this strategy.

Lemma 3.7 Let a = v, ..., v, be an elimination order of a graph G. Let M; be
both a subgraph of G,, and a minimal chordal supergraph of G;—1. Then M; has
a perfect elimination ordering v = wy,ws, ..., w, with (G;v) = M; and v, = wy,
fork=1,.,i—1.

Proof. Since both G;_; and G,, are associated with a = vy, ..., v,, we have for
allk = 1,...,4—1 the vertex vy, simplicial in both the graphs G;_1 [{vk, Vkt1, ---» Un}]
and Gp[{vk,Vk+1,---,Un}]. Note also that v, has the same neighbors in both
these graphs.

Hence vy, is also simplicial in M; since M; is a supergraph of G;_; and a
subgraph of G,,. For chordal graphs it is well-known that the elimination order
resulting from repeatedly eliminating a vertex which is simplicial in the graph
induced by non-eliminated vertices, is a perfect elimination ordering. We can
therefore find a perfect elimination ordering v of M; with v = wq, ...,w, and
v =wyg for k=1,...,4— 1.

We now show that (G;~) = M;. Eliminating vy, ...,v;—1 in this order in G or
G;_1 will in either case give us G;_1. Since M; is a minimal chordal supergraph

of G;—1 we must have (G;_1;7) = M;. Hence, (G;v) = M; since the initial
sequence of v is vy, ...,v;—1. O

We can now state the main theorem of this section.

Theorem 3.8 Let a = vy, ...,u, be an elimination order of a graph G. Let M;
be both a subgraph of (G;a) and a minimal chordal supergraph of G;—_y. For
any graph M which is both a subgraph of M; and a chordal supergraph of G, we

Proof. Observe that G C Gi—1 € M; C (G;a) and G C M C M;. By
Lemma, 3.7, we know that M; has a perfect elimination ordering v = wq, ws, ..., w,
with v, = wg, for all k=1, ...,7 — 1 and we also know that (G;_1;v) = M;. The
statement in the theorem says that if the edge uv of M; is a fill edge created,
in the process giving (G;—1;7v) = M; from G;_1, by the elimination of some w;
with ¢ < j < n, then uv must be an edge of M.

We prove this by contradiction. Assume that uv is the latest introduced fill
edge violating the condition. In other words, uv is created in the process giving
(Gi=1;7) = M; by w = wj, uv is not an edge of M, and every other fill edge of
this elimination process created by any wy with k > j is an edge of M. Since
M; is a minimal chordal supergraph of G;_1, and ww is a fill edge created by w,
by Theorem 3.2 and Corollary 3.3 there must exist a vertex 2 which in M; is not
adjacent to w but is adjacent to both u and v, with y(u) > y(w), v(v) > y(w)
and y(z) > y(w).

We will show that there exists in M, which is a subset of M;, a path from
w to & whose internal vertices have y-order less than w and z. We will thereby
arrive at a contradiction since, with v being a perfect elimination ordering of
M;, such a path would imply, by Lemma 3.1, that wz is an edge of M;. But w
and z are not adjacent in M;.

Since neither uv nor wz are edges in the chordal graph M, at least one of
wu,ux,zv and vw is not an edge of M. But M is a supergraph of G so any
of wu,uz,zv and vw which is not an edge of M must be a fill edge in the
elimination process (G;7y) giving M;. By assumption, uv is the latest fill edge
in this elimination process which is not in M, so any of wu, uz, zv and vw which
is not an edge of M, must be a fill edge of M; created earlier than uv. (Note it
could not be created at the same time as uv.) Therefore, by Lemma 3.1 there
must exist paths w — u,u = z,z — v, and v = w in G C M whose internal
vertices (if any) are earlier in the y-order than w and thus also earlier than
u, z,v. Consider the combined paths 4 — w — v and v — 2 — v. If these two
paths intersect in an internal vertex y then we find a path w — y — 2z giving
the desired contradiction. Otherwise, consider the shortest path u — w' — v
in M from wu to v using only vertices on the u — w — v path and the shortest
path u — 2’ — v in M from u to v using only vertices on the 4 — £ — v path.
These paths must have an internal vertex since uwv is not an edge of M, and the
vertices on these paths therefore induce a subgraph of M containing a k-cycle
with k& > 4. Since M is chordal, there is a chord on this cycle and this chord
must connect an internal vertex ¥’ in u — z' — v with an internal vertex y" in
u — w' — v. But then we find a path w — y' — y"” — z giving the desired
contradiction. (Note that this argument allows for w =y’ or z = ¢".) O

From Theorem 3.8, it follows that the fill edges in F; that are not removed
while examining F;, will never become candidates for removal at later steps while
examining Fj for j =4 —1,...,1. We are now ready to give a full description of
the algorithm in the next section.

4 The Algorithm

In this section we develop an algorithm which, given a graph G and an elim-
ination ordering a of G, finds a graph M which is both a minimal chordal
supergraph of G and a subgraph of (G;a).

After computing G,, = (G; a), and finding C; and F; fori = 1,...,n from G,
in a straightforward manner, our algorithm proceeds as follows: The algorithm
has n iterations. Initially, we set M = G,. Starting from ¢ = n and going
backwards, at each iteration 4, redundant fill edges in F; introduced by the
elimination of v; are removed. By Theorem 3.8, we know that the remaining
edges of F; need not be considered for removal at later iterations. The algorithm
has n iterations for simplicity, but actually n—3 would suffice since F;, and F,,_;
are empty and F,_» can always be removed.

The full algorithm is given in Figure 1. The subroutine that checks an edge
uv € Fj for its candidacy for removal is called CandidateEdge, and is based on
Corollary 3.3. The subroutine LEX-M is used to decide which of the candidate
edges in F; can be removed and which must stay to preserve chordality. W; is the
subgraph of C; on which we run LEX-M to find out which edges in Candidate(i)
are necessary. The original LEX-M was introduced by Rose, Tarjan and Lueker in
[20], and finds an elimination ordering resulting in a minimal chordal supergraph
of a given graph. For ease of understanding we assume that LEX-M(W;) returns
the set KeepF'ill(i) C Candidate(i) of fill edges whose addition to W; produces
a minimal chordal supergraph of W;. Note that W;UCandidate(%), if nonempty,
is a clique and a subgraph of C;.

Since the resulting graph M is a minimal chordal supergraph of G, every
perfect elimination ordering 8 of M gives (G;3) = M. A linear-time algorithm
for finding a perfect elimination ordering of a chordal graph is given in [20] and
is called LEX-P. Figure 2 illustrates how our algorithm processes a graph on 7
edges, with details of the calls of LEX-M in Figure 3. We first prove correctness
of the algorithm and then consider its time complexity.

Theorem 4.1 Algorithm MinimalChordal on input G and a = vy, ..., v, finds
a graph M which is both a minimal chordal supergraph of G and a subgraph of
(G; o).

Proof. Denote the graph M at the beginning of iteration 4 of the main loop of
the algorithm by M;,1, and at the end of iteration ¢ by M;. Since M; C M; 4,
and M, is initialized to G,, = (G;a) it is clear that each M; is a subgraph
of (G;a). In addition, the algorithm has the loop invariant: “The graph M;
is a minimal chordal supergraph of G;_;.” We show this by reverse induction
on i from n + 1 to 1. The loop invariant is clearly true initially for the graph
My4+1 = Gp. The edges E(M;41) are of four types:

(1) edges belonging to the original graph G.

(2) fill edges that were introduced before the elimination of v; which will be
considered for removal at later iterations.

(3) fill edges that were introduced after the elimination of v; which have not
been removed at earlier iterations.

(4) fill edges belonging to F;.

The graphs G; and G;_; both contain all the edges of types 1 and 2, so these
edges must belong to any chordal supergraph of G;_;. Since M;, is a subgraph
of G,, and a minimal chordal supergraph of G; we know by Theorem 3.8 that no
edges of Type 3 can be removed from M;,; and still give a chordal supergraph
of G, where E(G) C E(G;-1).

Hence, we need only show that (A) M; is chordal and that (B) any edge uv
of F; which remains in M; is not a candidate for removal. Consider Case (B)

Algorithm MinimalChordal (G, «);
Input: A graph G and an elimination ordering a = vy, ..., v, of G.
Output: 1. A chordal graph M which is both a minimal chordal supergraph of G
and a subgraph of the filled graph (G;).
2. A minimal elimination order 8 of G s.t. M is the filled graph (G; ().

begin
Find (G;a) and C;, F; for i = 1,2,...,n;
M = (G; a);

for i =n downto 1 do
Candidate(i) = 0;
Incident (i) = 0;
for all edges uv € F; do
if CandidateEdge(uv, i, M) then
Candidate(i) = Candidate(i) U {uv};
Incident(i) = Incident(i) U {u,v};
end-if
end-for
if Candidate(i) # 0 then
W; = C;[Incident(i)] \ Candidate(i);
KeepFill(i) = LEX-M(W;);
M = M \ (Candidate(i) \ KeepFill(7));
end-if
end-for
return M and 8 = LEX-P(M);
end

Function CandidateEdge(uv,i, M): boolean;
Input: An edge uv € F; and the graph M.
Output: Returns true if uv is a candidate to be removed from M, false o.w.
begin

cand = true;

for each neighbor z of u do

if a(z) > i and zv € E(M) and zv; ¢ E(M) then
cand = false;

end-for

return cand;
end

Figure 1: Algorithm MinimalChordal and Function CandidateEdge.

Lo
O O

1. Theoriginal graph G.

3. After removal of fill introduced by vertex 4.
The edge (5,7) was a candidate edge and was
removed.

5. After removal of fill introduced by vertex 1.
Edges (2,6) and (3,5) were candidate edges, whereas
(3,6) was not a candidate edge since (6,4) and (3,4)
are edges and (2,4) is not. One of the candidate edges
can be removed, and (3,5) was chosen.

2. Thefilled graph of G resulting from the shown
elimination ordering.
Thefill edgesintroduced by vertices1, 3 and 4 are
drawn with respectively dashed, dotted and thick lines.

(6) 7
D
|
~
©) ©

4. After removal of fill introduced by vertex 3.
The edge (4,5) was a candidate edge and was removed,
whereas (4,6) was not a candidate edge
since (6,7) and (4,7) are edges, and (3,7) is not an edge.

e !
// !
. |
\g, @ 0

7. A perfect elimination ordering on theresulting
minimal chordal supergraph of G.

Figure 2: An example illustrating the algorithm. The calls of LEX-M in Steps 4

and 5 are shown in detail in Figure 3.

Cs W3

-

W1

b)

Figure 3: Steps 4 and 5 of the previous example (Figure 2) shown in detail.
a) Candidate(3) = {(4,5)}, and Incident(3) = {4,5}. The subgraph W; is
defined as Cs[Incident(3)] \ Candidate(3). LEX-M(W3) returns no fill, hence
(4, 5) is removed from M. b) Candidate(1) = {(2,6), (3,5)}, and Incident(1) =
{2,3,5,6}. LEX-M(W1) returns (2,6) as fill, thus only (3,5) can be removed
from M as redundant fill.

first. By Theorem 3.2 it suffices to show that any such edge uv is the only chord
of a 4-cycle in M;. There are two cases: either (B.1) uv € Candidate(i) or (B.2)
not.

(B.1) At the beginning of iteration 4, the neighbors among {v;t+1,...,v,} in
M1 of vertex v; induce a clique C;, and the fill edges F; are all contained
in this clique. The edges in F; that are candidates for removal are identified
as Candidate(i), and the vertices which are incident to at least one candidate
edge, are stored in Incident(i). We set W; to be the subgraph of C; induced
by the vertices in Incident(i) minus the edges in Candidate(i). Candidate
edges of F; may be removed in the call of LEX-M(W;), which gives us a set
KeepFill(i) C Candidate(i) of fill edges that when added to W; gives a minimal
chordal supergraph of W;. The edges in Candidate(i) \ KeepFill(i) are then
removed from M;;; to give us M;. An edge uv € KeepFill(i) is guaranteed,
by the correctness of algorithm LEX-M and Theorem 3.2, to be a unique chord
of a 4-cycle in the graph W; U KeepFill(i) and therefore also in M;, since
W; U KeepFill(i) is an induced subgraph of M;.

(B.2) If ww is found not to be a candidate in the call CandidateEdge(uv, i, M;t1)
then it is because there exists a vertex z which in M;,; is a neighbor of both
u and v but is not a neighbor of v;. Note that the 4-cycle v;,u, z, v, v; contains
only edges of Type 1, 2 or 3 and wwv is therefore a unique chord of this 4-cycle
also in M;.

(A) It remains to show that M; is chordal, which we do by contradiction.
Let S be the vertices on a shortest chordless cycle of length at least 4 of M.
We know that there must exist at least two vertices a,c in S such that ac €
Candidate(i) \ KeepFill(i), since M; 11 = M; U (Candidate(i) \ KeepFill(i))
is chordal. Also S must contain at least one vertex b & V(C;) since the graph
M;[V (C;)] is chordal (M;[V (C;)] contains the minimal chordal supergraph of W;
computed by LEX-M and the vertices in V(C;)\ Incident (i) which are incident to
every other vertex in V(C;).) Moreover, every vertex z € S must have a(z) > i
since M; contains all fill edges F7, ..., F;_1, and the cycle induced by S contains
no chords. We can therefore find a path a,by,...,bg,c in M;[S] with &k > 1, a
and ¢ in V(C;), ac € Candidate(i) \ KeepF'ill(i), and b;,1 < j < k, not in

10

V(C;). But then we have a (k + 3)-cycle a, by, ..., bg, ¢, v5,a in My, which ac
is the only chord of since none of b; is in V(C;). If k = 1, then this contradicts
that ac € Candidate(i). If k& > 2, then a,bq,ba, ..., bk, c,a induce a chordless
(k + 2)-cycle in M;4;, contradicting that M;;, is chordal.

The loop invariant therefore holds as claimed. Note that this establishes
correctness of the algorithm as upon termination the returned graph Mj is both
a minimal chordal supergraph of Gp = G and a subgraph of G, = (G;a). O

Theorem 4.2 Let a = vy,vs, ..., v, be an elimination ordering of a connected
graph G, with n = |V(G)|, e = |E(G)| and f =Y, |Fi|. The time complezity
of Algorithm MinimalChordal(G;) is O(f(e + f)).

Proof. Computing G, (see [21]) and the call of LEX-P (see [20]) both take time
linear in the size of the filled graph. From G, the sets F; and C; can be com-
puted in time O(n f) by simply examining every fill edge for every vertex. The al-
gorithm has n iterations. At each iteration 7, CandidateEdge is called | F;| times,
and LEX-M is called once. The time complexity of CandidateEdge(uv,i, M) is
O(|Ng(u)]) = O(n). The time complexity of LEX-M(W;) is O(|V (W;)||E(W3)|),
(see [20]). Thus for the whole algorithm, we get:

n

o SavavliEw| + IFin)

i=1

By the definition of W;, |V(W;)| = |Incident(i)| < 2|F;|. Clearly, |[E(W;)| <
(e+ f). Thus, the time complexity of LEX-M(W;) becomes O(|F;|(e+ f)). Since
all the F; are disjoint, Y7 | [Fj|n = O(fn), and Y1 | |F|(e+ f) = O(f(e+f)).
Since G is connected, n < (e+ f), and the overall time complexity is O(f(e+ f))
O

We would like to emphasize that the upper bound given on the time com-
plexity is met only if the subgraphs Wy, Ws, ..., W,, overlap heavily so that the
calls of LEX-M involve some large part of the graph several times. However, the
examples we have studied indicate that these subgraphs do not overlap very
much in practical applications. In the example of Figure 3 we see that the
subgraphs W; do not overlap on edges at all. Our numerical tests presented in
the next section, show that if the original ordering is a low-fill ordering (like
minimum degree), then there is very little overlap between the mentioned sub-
graphs. On the other hand, orderings resulting in heavy fill give more overlap,
and we have constructed an example that matches the upper bound of the time
complexity, showing that we indeed have a ©(f(e + f)) algorithm.

5 Numerical results

In this section, we present the numerical values of tests using a FORTRAN9Q im-
plementation of Algorithm MinimalChordal, running on graphs corresponding
to sparse matrices from real applications. The matrices that form our sample
are taken from the well-known Harwell-Boeing collection [8], and downloaded
from Matrix Market [4, 3]. We have chosen to include in our sample all n x n
symmetric matrices with n < 500 that appear in this collection, and that are
available in Matrix Market format. We have omitted diagonal matrices and
completely dense matrices since these correspond respectively to graphs on iso-
lated vertices and complete graphs. This constitutes a total of 51 matrices,
coming from several families, but even within a family the structural properties
of the corresponding graphs can vary widely.

11

For each matrix, we test two initial orderings on the corresponding graph.
First we find the filled graphs produced by a minimum degree (MD) ordering and
by a nested dissection (ND) ordering. In Figure 4 we have plotted the number
of fill edges f produced by the MD ordering versus the number of vertices n of
the graph. As the worst-case time complexity of our MinimalChordal algorithm
depends heavily on the value of f, it is comforting to see that in most cases we
have f < 10n. Of the 51 tested matrices, 12 have MD fill below n.

5000

4500

4000

3500

3000

N
@
2
S

2000

number of fil edges produced by MD

1500

1000

500

0

L X L L
200 250 300 350
number of vertices

T L
0 50 100 150

Figure 4: The number of fill edges after MD ordering (y-axis) versus number of
vertices (x-axis). The linear curves f = n and f = 10n are shown. To improve
the scale we have left out the three data points with highest fill: (420, 6461),
(445,8030), (468,14929).

2 N o o B
g8 3 &8 8 38
T T T T T

o
o

IS
S
T

percentage of removed fill edges
a
g

w

=]
T
o

N
S

ro

[o

oo

o

o

oo

o
o

o

o o

* HH * o o
0po *
of #wk#es® FaradFer onooasBERad ARHraR @B BeaBaksd
.

I I
25 30
matrices

L
0 5 10 15 20 35 40 45 50

Figure 5: The percentage of fill edges removed (y-axis) by Algorithm Mini-
malChordal for each matrix (x-axis). Stars denote fill removed from the MD
ordering, and boxes denote fill removed from the ND ordering.

Then we minimalize these filled graphs by Algorithm MinimalChordal. The
number of fill edges, f, produced by an initial ordering is compared to the
number of fill edges removed by Algorithm MinimalChordal. In Figure 5 we
have plotted the percentage of removed fill edges. It is interesting to note that
the fill produced by the MD ordering is in many cases already minimal (i.e. the

12

star is on the 0 percent line), whereas for ND ordering a substantial amount is
removed in many cases. For our test set, MD gave a minimal ordering for 51%
of the matrices, whereas ND was minimal for about 16%.

The FORTRAN code used for MD is implemented by Joseph Liu [14], and
it is among the fastest known implementations of this heuristic. For ND, we
used the public domain FORTRANI0 code from METIS [11]. Our FORTRAN9O
code is a straightforward implementation carried out by a graduate student,
and with limited time for enhancements. After removal of comments our code
has 600 lines, about the same as the established MD code. About a third of
these lines is the actual MinimalChordal algorithm, with the rest taken up by
preprocessing that finds the fill edges produced by the initial orderings, and by
the LEX-M subroutine (to our knowledge, LEX-M has no public domain code.)

matrix n e order f red. | red. || time | time time
fill % order | MC | factor

besstk01 48 | 176 | MD 253 0| 00 1.3 9.0 6.9
ND 289 1] 04 3.3 9.9 3.0

besstk03 | 112 | 264 | MD 8 0| 00 1.3 8.0 6.2
ND 138 | 112 | 81.2 1.0 14.0 14.0

besstk04 | 132 | 1758 | MD 1449 6| 04 37.2 | 2958 8.0
ND 1762 26| 1.5 32.3 | 360.2 11.2

besstk05 | 153 | 1135 | MD 1051 0| 0.0 28.8 | 192.0 6.7
ND 1516 | 324 | 21.4 21.1 | 285.2 13.5

besstk06 | 420 | 3720 | MD 6461 27| 04| 128.4 | 1173.3 9.1
ND 8053 | 291 | 3.6 66.8 | 1529.6 22.9

besstk08 | 1074 | 5943 | MD || 23111 49 | 0.2 || 263.4 | 1943.6 7.4
ND || 28008 | 1035 | 3.7 || 64.5 | 2642.3 41.0

besstk19 | 817 | 3018 | MD 4470 8| 1.9 22.1 | 196.9 8.9
ND 5894 | 1475 | 25.0 13.7 | 307.5 22.5

besstk20 | 485 | 1325 | MD 534 0| 0.0 9.0 54.4 6.0
ND 967 | 282 | 29.2 3.6 70.3 19.5

besstk22 | 138 | 279 | MD 295 1] 0.3 2.6 17.0 6.5
ND 306 8| 26 2.0 16.8 8.4

Table 1: Columns 2 and 3 show the number of vertices and the number of orig-
inal edges in the associated graph respectively. For each matrix, there are two
rows, one for each of the initial ordering heuristics MD and ND. For each initial
ordering, we compute the fill in Column 5, and the fill removed by Minimal-
Chordal in Column 6. The percentage reduction in the number of fill edges is
given in Column 7. The last three columns show respectively the runtime in
milliseconds of the ordering algorithm and of Algorithm MinimalChordal, and
the multiplicative factor between these.

In Table 1, we have chosen an arbitrary family of matrices from the collection,
and display in addition to numerical values of vertices, edges and fill, also the
exact runtimes of the ND, MD and MC (MinimalChordal) codes. The matrices
in this family display high variance on all these properties, and give a good
indication of the general behavior on the whole test collection. For this test,
we have taken all the appropriate matrices of the family besstk without the size
limit of 500 vertices, giving us two larger matrices outside the initial test set. It
is interesting to note that our MC code is never more than 10 times slower than
the MD code while it is up to 40 times slower than the ND code. On the other

13

hand, substantially more fill is removed from the ND orderings. Compared to
the amount of hours spent enhancing the MD and ND implementations, we
believe our MC code has an acceptable speed in practice.

6 Conclusion

As mentioned in the introduction, minimal low fill orderings are desirable, but
minimal fill is not necessarily low fill. Practical algorithms like minimum degree
and nested dissection usually produce low fill orderings, but not necessarily
minimal fill orderings. Therefore we assumed a filled graph (preferably with low
fill) already given and considered the problem of removing fill edges to produce
a minimal filled graph (with lower fill). For this purpose, we have introduced
Algorithm MinimalChordal. An interesting question that arises is the amount
of fill edges that can be removed in practice. The numerical results presented
in the previous section show that minimum degree orderings are often close to
minimal, whereas nested dissection orderings produce fill that can be reduced
considerably by a minimalization. The time complexity of our algorithm is
dependent on the number of fill edges we start with. In some cases this number
is already low, in other cases it is high and our algorithm may remove many
redundant fill edges. Even if we do not believe we can successfully express the
worst-case time bound of our algorithm as a function of the number of fill edges
removed, our numerical results indicate that on inputs from real applications it
may be possible to show an interesting correlation between the runtime of the
implementation of our algorithm and the fill removed. Although the worst-case
time bound of our algorithm may not be acceptable to the practitioners, the
runtime in practice seems to be good and this gives us hope that with further
improvements of the implementation, it could be used in practice as intended.

Acknowledgements

The authors are indebted to Barry Peyton for suggesting the problem of
finding a minimal chordal supergraph from a non-minimal chordal supergraph.
The FORTRANIO implementation of MinimalChordal and LEX-M are done by
Ole-Martin Kvinge. We are grateful to Joseph Liu for letting us use his minimum
degree code for research purposes.

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database systems. J. Assoc. Comput. Mach., 30:479-513, 1983.

[2] J. R. S. Blair, P. Heggernes, and J. A. Telle. Making an arbitrary filled
graph minimal by removing fill edges. In R. Karlsson and A. Lingas, edi-
tors, Algorithm Theory - SWAT 96, pages 173—184. Springer Verlag, 1996.
Lecture Notes in Computer Science 1097.

[3] R. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. Dongarra. Matrix
market : a web resource for test matrix collections. In R. Boisvert, editor,

The Quality of Numerical Software: Assessment and Enhancement, pages
125-137. Chapman and Hall, 1997.

[4] R. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman. NIST
Matriz Market. http://math.nist.gov/MatrixMarket/.

14

[5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

F. R. K. Chung and D. Mumford. Chordal completions of planar graphs.
J. Comb. Theory, 31:96-106, 1994.

E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In
Graph Theoretical Concepts in Computer Science, pages 132-143. Springer
Verlag, 1997. Lecture Notes in Computer Science 1335.

E. Dahlhaus and M. Karpinski. An efficient parallel algorithm for the

minimal elimination ordering of an arbitrary graph. Proceedings FOCS,
pages 454-459, 1989.

I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix test problems.
ACM Trans. Math. Softw., 15:1-14, 1989.

R. E. England, J. R. S. Blair, and M. G. Thomason. Independent compu-
tations in a probablistic knowledge-based system. Technical Report CS-90-
128, Department of Computer Science, University of Tennessee, Knoxville,
Tennessee, 1991.

A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

G. Karypis. METIS Family of multilevel partitioning algorithms.
http://www-users.cs.umn.edu/~karypis/metis/.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with proba-
bilities on graphical structures and their applications to expert systems. J.
Royal Statist. Soc., ser B, 50:157-224, 1988.

J. G. Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering
sparse matrices for parallel factorization. SIAM J. Sci. Stat. Comput.,
10:1156-1173, 1989.

J. W. H. Liu. Private communication.

J. W. H. Liu. Equivalent sparse matrix reordering by elimination tree
rotations. SIAM J. Sci. Stat. Comput., 9:424-444, 1988.

J. W. H. Liu and A. Mirzaian. A linear reordering algorithm for parallel
pivoting of chordal graphs. SIAM J. Disc. Math., 2:100-107, 1989.

T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a
graph and optimal pivoting ordering in a sparse matrix. J. Math. Anal.
Appl., 54:622-633, 1976.

B. W. Peyton. Some applications of clique trees to the solution of sparse
linear systems. PhD thesis, Dept. of Mathematical Sciences, Clemson Uni-
versity, 1986.

D. J. Rose. A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations. In R. C. Read, editor, Graph
Theory and Computing, pages 183—217. Academic Press, 1972.

D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5:266-283, 1976.

R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Comput., 13:566-579, 1984.

15

[22] M. Yannakakis. Computing the minimum fill-in is NP-complete. STAM J.
Alg. Disc. Meth., 2:77-79, 1981.

16

