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Abstract

Motivated by the desire to speed up dynamic programming al-
gorithms for graphs of bounded treewidth, we initiate a study of
the tradeoff between width and pathwidth of tree-decompositions.
We therefore investigate the catwidth parameter catw(G) which is
the minimum width of any tree-decomposition (T, X) of a graph G
when the pathwidth pw(T) of the tree T is 1. The catwidth pa-
rameter lies between the treewidth and the pathwidth of the graph,
tw(G) < catw(G) < pw(@G), and just as treewidth relates to chordal
graphs and pathwidth relates to interval graphs, catwidth relates to
what we call catval graphs. We introduce the notion of an extended
asteroidal triple (XAT) and characterize catval graphs as the XAT-
free chordal graphs. We provide alternative characterizations of these
graphs, show that there are graph classes for which the various pa-
rameters differ by an arbitrary amount, and consider algorithms for
computing catwidth.

1 Motivation and background

Dynamic programming algorithms on bounded treewidth graphs have been
studied since the mid-1980s leading to several powerful approaches, see [7]
for an overview. Recent efforts have been aimed at making these theoretically
efficient algorithms amenable also to practical applications, for example in
the field of compiler optimization [12, 19, 6], and also as subroutines to
solve planar graph problems [1, 2, 3]. It is clear that avoidance of time-
consuming I/O to external memory becomes an important issue [5], and
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this forms the motivation for our study of the tradeoff between width and
pathwidth of tree-decompositions. In a somewhat similar setting, the tradeoff
between width and diameter of tree-decompositions has been studied, which
has applications to dynamic and parallel algorithms [8]. We first give the
background explaining how the speed of a bounded treewidth algorithm is
connected to the pathwidth of the tree-decomposition used.

A tree-decomposition (T, X) of constant width k of a graph G shows, intu-
itively, that G can be constructed by gluing together graphs of size £+ 1, on
vertex sets of size k, in a process guided by the tree 7. A graph induced by
a subtree of 7" will be a subgraph of G that is connected to the rest of G by
at most k vertices. This explains why bottom-up dynamic programming on
the tree-decomposition, that solves a problem brute-force on separators of
constant size k£ and on gluings of such separators, can be used to efficiently
solve a number of NP-hard graph problems on G. Such algorithms compute
a table, of size exponential in k, for each node of the tree T, of partial so-
lutions of the problem restricted to the subgraph of G induced by the tree
rooted at this node. The large size of the tables means that these algorithms
are memory-intensive. Since the information contained in the table at a child
node of T is superfluous once the table of its parent has been updated, we
look for a bottom-up traversal of 1" that minimizes the number of tables
that need to be stored simultaneously. In [5] a simple linear-time algorithm
finding such a traversal for a tree T' is given, and moreover it is shown that
the minimum number of tables needed lies between the pathwidth of 7" and
twice the pathwidth of T

The natural issue that arises is therefore to study the tradeoff between the
width k£ and the pathwidth of tree-decompositions, in the hope that I/O to
external memory can be avoided or minimized. We will do this by studying,
on the one hand, the catwidth parameter of GG that reflects the lowest width
obtainable when we restrict the tree 17" of the tree-decomposition to have
pathwidth 1. Such trees are called caterpillars, and the catwidth of a graph
lies between the treewidth and the pathwidth of the graph. See Figure 1 for
a very simple example showing three different tree-decompositions T, T",T"
of a graph and the number of tables in internal memory needed for each of
them. We claim that the accepted observation that dynamic programming on
a path-decomposition like 7" is easier than on a general tree-decomposition
holds also for ’caterpillar’-decompositions like T”. However, since both the
size of tables in the tree-decomposition varies and the number of tables in
memory (and thus also the number of external memory references that may
be necessary) may vary during computation, the current investigation is only
a worst-case analysis. For the actual running time also further factors play



a role, e.g. the time for updating a table based on another may also depend
on the symmetric difference of nodes in the corresponding bags, and in this
sense tree T" in Figure 1 is slightly worse than the other two. The actual
effect of the current observations on the speed of treewidth algorithms must
therefore be empirically tested, beyond that which was already reported in
[5].

Just as treewidth relates to chordal graphs and pathwidth relates to interval
graphs, catwidth relates to what we call catval graphs. A well-known concept
in the study of graphs with a linear structure is that of an asteroidal triple
(AT), see e.g. [9], and here we introduce extended asteroidal triples (XAT)
to characterize catval graphs as exactly the XAT-free chordal graphs. The
optimal situation may be said to arise when a graph has a tree-decomposition
with pathwidth 1 which achieves the optimal width, i.e. when the treewidth
of G is equal to the catwidth of G. It has been shown [17] that the mul-
titolerance graphs have this property. On the other hand, it is clear that
we must allow higher pathwidth, and that the width k£ is more important
than the pathwidth, since the size of tables can be exponential in the width
k while the number of tables needed is only linear in the pathwidth. We
therefore look also at the spacewidth parameter of (G, which accounts for
this relative importance of width to pathwidth by multiplying the width of
a tree-decomposition with the logarithm of its pathwidth.

We start by giving the basic definitions needed, and then look at alternative
characterizations of the graphs having bounded value of the parameters. We
show that there are graph classes, even trees, for which these parameters differ
by an arbitrary amount. We also look at algorithms for these parameters,
showing that it is NP-hard to compute the spacewidth or catwidth of a
graph, but solvable in polynomial time to decide if these values are below a
fixed constant k.

2 Basic definitions

We consider only connected, simple graphs with at least one edge. A leaf
is a vertex with degree one. A tree is any graph that can be constructed by
starting with a single vertex and iteratively adding leaves to the tree obtained
so far. A path is a tree with two leaves. A caterpillar is a tree consisting of
a path (the 'body’) with added leaves (the "hairs’). A graph G is a partial
C-graph, for a class of graphs C, if G is a subgraph of a graph in C. A
k-clique is a set of k vertices that induce a completely connected graph. A
k-leaf is a vertex of degree k whose neighbors form a k-clique. A k-tree is
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Figure 1: Three tree-decompositions 7', 7", T" of a graph G and the succession
of tables stored in internal memory during dynamic programming on each of
them.



any graph that can be constructed by starting with a k-clique and iteratively
adding k-leaves to the k-tree obtained so far. A proper k-path is a k-tree
with two k-leaves. A k-path is a k-tree consisting of a proper k-path with
added k-leaves each of whose set of neighbors must form a separator of the
proper k-path. Note that a 1-tree is a tree, a proper 1-path is a path, and a
1-path is a caterpillar but not necessarily a path. The above terminology for
k-paths and proper k-paths has not always been fixed, but lately it seems to
be what most authors have accepted as the standard.

Definition 1 A tree-decomposition (7', X) of a graph G = (V(G), E(Q)) is
a tree 1" and a collection X of subsets of vertices of GG, called bags, with one
bag X; € X for each node i € V(T), such that for each edge uv € E(QG)
there is a node i € V(T') whose bag X; contains both v and v, and for each
vertex v € V(G) the nodes whose bag contains v form a connected subtree of
T. The width of the tree-decomposition is the maximum number of vertices
contained in any bag, minus one.

Definition 2 The treewidth tw(G) of a graph G is the minimum width of
any tree-decomposition (7', X) of G.

The pathwidth pw(G) of a graph G is the minimum width of any tree-
decomposition (T, X') of G where T is a path.

The fact that a graph G has treewidth at most k iff it is a partial k-tree,
and pathwidth at most k iff it is a partial k-path explains why the k-path
terminology has become the accepted one. We now define the main parameter
studied in this paper.

Definition 3 The catwidth catw(G) of a graph G is the minimum width
of any tree-decomposition (7, X) of G where T is a caterpillar, i.e. where
pw(T) = 1.

Since any path is a caterpillar and any caterpillar is a tree, we have tw(G) <
catw(G) < pw(G). In Figure 1 is a graph with treewidth 1, catwidth 2 and
pathwidth 3.

3 Catval graphs and k-caterpillars

The intersection graphs of subtrees of a tree, and subpaths of a path, are
the well-known chordal graphs and interval graphs, respectively. We give an
analogous definition for caterpillars.



Definition 4 We say that a graph G is a catval graph if G is the intersection
graph of a set of connected subgraphs of a caterpillar.

It is well-known that graphs with treewidth (resp. pathwidth) at most k are
exactly the subgraphs of chordal graphs (resp. interval graphs) of max clique
size k + 1. A similar result, with a straightforward proof, holds for catwidth.

Theorem 1 A graph G has catwidth at most k iff G is the subgraph of a
catval graph of maz clique size k + 1.

Proof. Let G have a tree-decomposition (7', X') of width £ with T a cater-
pillar. G' has max clique size k£ + 1 since for any clique of G' there must be a
bag containing those vertices. For a vertex v of G we define T, to be the sub-
graph of T" induced by the bags containing node v. By definition the graphs
{T, : v € V(G)} are connected subgraphs of the caterpillar 7" and it is easy
to check that their intersection graph has max clique size k£ + 1 and contains
G. Conversely, from a set of connected subgraphs of a caterpillar 7', we can
construct a tree-decomposition (7', X') by taking as the bag for a node z of
T precisely those vertices whose connected subgraph contains z. =

A well-known notion in the study of graphs with a linear structure is that of
an asteroidal triple, which forms the basis of a famous result by Lekkerkerker
and Boland from 1961 [15].

Definition 5 Three non-adjacent vertices z,y, z of a graph G form an as-
teroidal triple (AT) if between any two of them there exists a path in G that
avoids the neighborhood of the third.

Theorem 2 [15] G is an interval graph iff it is chordal and AT-free.

We give a similar result for catval graphs, based on the notion of an extended
asteroidal triple. See Figure 2 for an example.

Definition 6 An asteroidal triple x,y, z of a graph G is an extended aster-
oidal triple (XAT) if there exists vertices x',y', 2’ with |{z,y, z,2",y',2'}| = 6

such that N[z'] C N[z], N[y'] C N[y], N[2'] C N[z]. (where C denotes strict
inclusion)

Theorem 3 G is a catval graph iff it is chordal and XAT-free.
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Figure 2: Two chordal graphs that are not catval, as they have asteroidal
triples x,y,z that form an extended asteroidal triple. This is verified by
x',y', 2, whose closed neighborhoods are strictly contained in the closed
neighborhoods of x,y, z, respectively. Addition of the dotted edge gives a
catval graph.

Proof. We will use the concept of a clique tree of a chordal graph G, which
for our purposes can be viewed simply as a minimal tree-decomposition of G
in which every bag induces a maximal clique. It is well-known that interval
graphs are those chordal graphs having clique trees that form a path, and
likewise it is easy to see that catval graphs are those chordal graphs having
clique trees that form a caterpillar.

Assume G is chordal and has an XAT z,y, 2. Since z,y, z is an AT, we know
from Theorem 2 that any clique tree T of G' has bags C, X,Y, Z such that
r,y,z € Cox € X,y € Y,z € Z and removal of C' from T disconnects T
with X,Y, Z in three separate components. This holds since we have the
three paths between any pair. Consider the one from z to y that avoids N|z].
This path must necessarily contain a vertex from each bag on the path in 7T’
from X to Y, and one of those bags, in particular C, cannot contain z, as
every bag induces a clique. We claim that 7" cannot be a caterpillar, since if
this were so we would have at least one of X,Y, 7, say Z, being a leaf of T
with C' its only neighbor. We know z € Z and N[z'] C NJ[z] so there exists
w € N(z) \ N(2'), thus 2z’ must belong to some bag Z' with w ¢ Z'. But we
cannot have 2z’ € C, since C contains at least one vertex not in N[z], namely
the vertex on the z,y-path avoiding N[z]. Thus Z is not a leaf, T is not a
caterpillar, and G is not a catval graph.

For the other direction of the proof, let G be chordal and XAT-free. We will
show that it has a clique tree which is a caterpillar, i.e. a path (the body) with
added leaves (the hairs). For a given tree 7" with two chosen leaves X and Y
we assign a quadruple of integers (M, N, D, S) that will indicate how close the
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Figure 3: Part of a clique tree with X, Y; endbags of the body.

tree is to being an ’optimal’ caterpillar with body the path between X and
Y. Let D be the length of the path between X and Y, let M be the maximum
distance of any leaf to this body, let there be N leaves at this distance M,
and let S = |N(X")| + |[N(Y")| for the unique neighbors X', Y” of the leaves
X,Y. For the tree T we assign the lexicographically smallest quadruple (in
left-to-right decreasing order of importance) (M, N, D, S) thus assigned over
all choices of X and Y. Note that M < 1 iff T is a caterpillar. Now, over all
clique trees of GG, pick one, call it 7', that has the lexicographically smallest
quadruple thus assigned, say (M, Ny, Dy, St). Recall 1. Mp: Max distance
of leaf to body, 2. Ny: Number of leaves at max distance, 3. Dy: Length of
body, 4. St: Size of neighborhood of neighbors of endvertices of body. We will
show that if M7 > 2 we can find a clique tree 7" of G such that its quadruple
(Mg, Npv, Dyv, Stv) is lexicographically smaller than (Mg, Ny, Dr, St), in
contradiction to the minimal choice of 7.

If My > 2 we can find bags C, X,Y,Z in T such that X and Y are the
endbags of the chosen body, C is a ’central’ bag on the body, Z is a leaf bag
at maximum distance from the body, and removal of C' from T disconnects
T with X,Y, Z in three separate components. Let the path from X to C be
X =X1,Xy,...,Xj_1 = Clept, X; = C for some j > 3. See Figure 3. Note that
we must have a vertex ' € X; and 2’ ¢ X, since otherwise X; C X, and T is
not a clique tree since either X; = X, or X; does not induce a maximal clique.
Likewise, we must have a vertex z € X,z € Xy, z ¢ X3 since otherwise
X1 N Xy € X3 and the tree 7" obtained by dropping the (X, X3)-edge and
instead making X; adjacent to X3 would be a lexicographically lower clique
tree of G. We distinguish two cases. Case 1: N(X3) = {Xi, X3}. Endbags
X1,Y gives a body for T" with shorter body, i.e. where M7 = My, Nyw = N



and D < Dyp. Case 2: We have some X € N(X5) \ {Xi, X3}. Endbags
X,Y gives a body for 7" with smaller neighborhood for the neighbors of the
endbags, i.e. where My = My, Nyv = Np, Dpr = Dy and S < Sp. A similar
argument identifies vertices ¢’ and y at the other end Y of the body. Let the
path from Z to C'be Z = Z1, Z,, ..., Z; = C, 7 > 3. Note that we must have a
vertex 2z’ € Z; and 2’ € Zy since otherwise Z; C Z5 and T is not a clique tree
since either Z; = Z, or Z; does not induce a maximal clique. Likewise, we
must have a vertex z € 7,z € Zy, 2z & Z3 since otherwise Z; N Zy C Z3 and
the tree 7" obtained by dropping the (Z;, Z5)-edge and instead making 7,
adjacent to Z3 would be a clique tree of G where the same choice of endbags
would give lower maximum distance to a leaf or fewer vertices at maximum
distance, i.e. with My < My or with My = My and Ny < Nrp.

Now, we will argue that x,y, z is an XAT in G. We have already shown that
there exists z', 4/, 2’ such that N[z'| C N|z], N[y'] C Nly], N[z'] C Nlz]. It
remains to show that there exists a path between any two that avoids the
neighborhood of the third. We construct such an z,y-path by choosing (in
such a way that the path becomes simple) from each bag on the X, Y-path a
vertex that is not in Z, and hence not in N[z]. Such a vertex must exist in
each of these bags, and we show this in particular for the bags Cief, C, Crignt
where (Cest, C) and (C, Cyigne) are assumed to be edges of the X, Y-path. If
there does not exist a vertex a € Ciepy N C with a ¢ Z,, then Ciepy N C C Zy
and the tree 7" obtained by removing the edge (Cies, C) and adding the
edge (Ciest, Z2) would be a clique tree of G where the same choice of endbags
would give lower maximum distance to a leaf or fewer vertices at maximum
distance, i.e. with My < My or with My = My and N < Np. Likewise,
there must exist a vertex b € C N Crigne With b ¢ Z; (note that we may
have ¢ = b). Thus, we can choose a and b to be consecutive vertices on
the x, y-path. The arguments that there must exist an x, z-path that avoids
the neighborhood of y and a z,y-path that avoids the neighborhood of =z,
are similar. We give the argument for the z,z-path, which is constructed
by choosing from each bag on the X, Z-path a vertex that is not in Y. If
such a vertex does not exist in, say Ciepe N C, then Ciepy N C C Y5 and
the tree T" obtained by removing the edge (Ciesi, C) and adding the edge
(Clest, Y2) would be a clique tree of G where endbags X, Z would give the
body X, ..., Cieft, Y2,Y3, ..., Cright, C, ...Z having lower maximum distance to
a leaf or fewer vertices at maximum distance, i.e. with Mp < Mgy or with
My = My and Ny < Np. This follows since the only new leaf is Y which
is at distance 1, and the old maximum distance leaf Z is now on the body.
Similarly, we can find a vertex in C'U Z; ; not in Y5 since otherwise the
tree 7" obtained by removing edge (C, Z; ;) and adding edge (Z; 1,Y2) is a



Figure 4: The black vertices form a (3,2)-flap, and its addition to G intro-
duced the new vertices @ and b and the thick edges, each incident to at least
one new vertex.

clique tree where the choice of body with endpoints X, Z has lower maximum
distance or fewer vertices at maximum distance.

We conclude that the assumption that M; > 2 leads to the existence of an
XAT in G, a contradiction. Thus, My < 2, T is a caterpillar and G is a catval
graph. m

Our next goal is to define k-caterpillars, so that k-caterpillars will relate to
catwidth £ in the same way that k-trees relate to treewidth £ and k-paths
to pathwidth k. We first generalize the notion of a k-leaf. See Figure 4. Note
that a k-leaf is a (k, 1)-flap.

Definition 7 For p,q > 1, a (p, ¢)-flap in a graph G consists of taking two
disjoint sets P and @) of respectively p and ¢ vertices, that together induce
a (p + gq)-clique, such that P separates ) from the rest of the graph. The
operation of adding a (p,¢)-flap to a graph G consists in taking for P an
existing p-clique in (G, and adding the ¢ new vertices (), together with the
new edges incident to the vertices of Q).

Definition 8 A k-caterpillar is a k-tree consisting of a k-path with added
(p7 C])-ﬂapS, for any p+q = k+1.

Note that a 1-caterpillar is a caterpillar with added leaves, just as a 1-path
is a path with added leaves.

Theorem 4 A graph G has catwidth at most k iff G is a partial k-caterpillar.
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Proof. For one direction: Let G be a subgraph of a k-caterpillar A that
consists of a k-path B with added (p, g)-flaps. It is well-known that pw(B) =
k, and we construct a tree-decomposition of A, and hence also of GG, starting
from an optimal path-decomposition (7', X) of B. Let (P, Q) be a (p, q)-flap
of A that was added to B with |P| =p,|Q| = ¢,p+ g = k+ 1. Since P is
a clique of B we have P C X, for some bag X; of (T, X). Make a new bag
containing the vertices P U () and make this bag adjacent to X;. Doing this
for each (p,q)-flap of A that was added to B we end up with the desired
tree-decomposition (77, X’) width k£ + 1 of G with 7" a caterpillar. For the
other direction: Let (7", X') be a tree-decomposition of width k+1 of G with
T' a caterpillar consisting of a path T with added leaves. It is well-known
that the path-decomposition induced by T is the path-decomposition of a
subgraph C of G to which we can add edges and get a k-path B. Let S be a
bag of 7" — T, adjacent to bag X; of T. We know there is a (k + 1)-clique K
of the k-path B with X; C K. We add a (P, @)-flap to B where Q = S — X;
and P = SN X;UR, where the vertices R are chosen arbitrarily from K — X;
so that |P| = k + 1 — |Y|. Doing this for all bags of 7 — T' constructs a
k-caterpillar having G as a subgraph. m

4 Graphs with extreme parameter values

As explained in the introduction, from a practical viewpoint we must allow
the tree in the tree-decomposition to have higher pathwidth than 1. Moreover,
for memory usage the width k is more important than the pathwidth of the
tree, since the size of tables is exponential in the width £ while the number
of tables needed is only linear in the pathwidth. The spacewidth parameter
of G is an attempt to model this relative importance.

Definition 9 The spacewidth spacew(G) of a graph G is the minimum, over
all tree-decompositions (7', X) of G, of the product of the logarithm of the
pathwidth of the tree T' plus one, and the width of the tree-decomposition,
ie.

spacew(G) = (Iqqgg{flogQ(pw(T) + 1] (nax{|X;[} - 1)}

Note that the factor [log,(pw(T) 4+ 1)] is 1 only for pw(T) = 1. Since no
tree has pathwidth less than 1, and the pathwidth of a caterpillar is 1, and
any path is a caterpillar, we have the spacewidth parameter lying between
the treewidth and catwidth parameters: tw(G) < spacew(G) < catw(G) <
pw(G). In the remainder of this section we prove the following:

11



Figure 5: A 2-tree with a tree-decomposition of width 2 and pathwidth 2, for
which every tree-decomposition with pathwidth 1 has width at least 5.

Theorem 5 There are trees with arbitrarily large spacewidth, and the differ-
ence between the catwidth and pathwidth parameters can be arbitrarily large,
also for trees.

Allowing increased pathwidth of the tree-decomposition can affect the width
substantially. For example, the 2-tree G in Figure 5 has a tree-decomposition
(T, X) of width 2 with pw(T) = 2, while any tree-decomposition (77, X")
with pw(7T") = 1 has width at least 5, thus spacew(G) = 4 < catw(G). We
can show this by letting T" be the tree underlying the 2-tree construction
process, i.e. a 6-star with each edge subdivided 5 times, and naturally letting
each triangle of the 2-tree be a bag of size 3. However, for (77, X') with
pw(T") =1, all 3 vertices in the center triangle of the 2-tree must belong to
at least one bag in the ’induced’ path-decomposition of one of the 6 proper
2-path 'tentacles’. At least 3 vertices from this proper 2-path, apart from the
center triangle vertices, must also be in that bag, for a minimum of 6 vertices
in some bag.

We next show that the difference between the catwidth and pathwidth pa-
rameters can be arbitrarily large, even for trees.

Definition 10 Let 7; be the complete ternary tree with height ¢+ 1, defined
as follows: T} is a tree with a single node, which is also its root, and T;,7 > 1
is a tree with a root having three children such that the subtree rooted at
each child is a copy of T;_;.

Lemma 1 The difference between the catwidth and pathwidth of the complete
ternary tree Tyj)1; is at least j+1, for any j > 0 and f(j) =1+ (37 —1)/2.

12



Proof. It is well-known that pw(7;) = i for i > 1 [11]. The subtrees rooted at
vertices of height 7 <4 in T; are copies of 7T};. Consider a path-decomposition
(P, X)) of Ty(jy-1 of width f(j)—1, for any j > 0. Starting from this Ty;)_1 we
can construct a copy of Ty(;)4+; by adding, to each leaf x of T’s(;)_,, three copies
of Tj. Likewise, starting from (P, X) we can construct a tree-decomposition
(T, X) of Ty(j)4+; with T a caterpillar, by adding a leaf to P for each added
copy of T}, adjacent to a vertex in P whose bag contains the leaf = to which
this copy was added, with the vertices in this new leaf bag being those of T}
and z. The size of this bag is |[V(T})|+1 =1+ (3 —1)/2 = f(j). The width
of (T, X) is the same as the width of (P, X), namely f(j) — 1, and we thus
have catw(Ttj)+;) < f(5) — 1 and pw(Tyey45) = f(J) + 7. =

Even if all trees have treewidth 1, there exist trees with arbitrarily large
pathwidth, like the complete ternary trees, so it is an obvious question if
there are also trees with arbitrarily large spacewidth. The following shows
that the answer to this question is affirmative.

Lemma 2 If a connected graph G has a tree-decomposition (T, X) of width
k, then pw(T) > (pw(G) — k)/(k +1).

Proof. Assume T has a path-decomposition (P, X') of width pw (7). We can
then construct a path-decomposition (P, X") of G by ’expanding’ the bags
of P to contain the actual vertices of G that are members of corresponding
bags of T'. The pathwidth of G is thus at most the width of (P, X") which is
at most (k+1)(pw(T)+1)—1. =

5 Algorithms for catwidth and spacewidth

For a cograph G, its catwidth and spacewidth together with decompositions
can be computed in linear time. This by the algorithm given in [10] to com-
pute the pathwidth and a corresponding path-decomposition of a cograph,
since it is also shown that treewidth=pathwidth for cographs, and therefore
also pathwidth = catwidth = spacewidth = treewidth.

Just as for graphs of bounded treewidth and pathwidth, it is easy to see that
the graphs of bounded catwidth and spacewidth are closed under minors.

Fact 1 For any fized k > 1 the classes of graphs {G : spacew(G) < k} and
{G : catw(G) < k} are closed under minors.
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It follows from the work of Robertson and Seymour [18] that for each of these
graph classes there exists a finite list of minimal forbidden minors (note their
proof is not constructive) and thus polynomial time algorithms to decide
membership, for fixed k. Since a bound on these parameters implies a bound
also on the treewidth, these algorithms are linear-time.

Corollary 3 For any fized k > 1, the problem of deciding if a given graph
on n vertices belongs to {G : spacew(G) < k} or to {G : catw(G) < k} is
solvable in O(n) time.

The minimal forbidden minors for the class of graphs of catwidth 1 are the
triangle and the 10-vertex graph arising from subdividing each edge of a 3-
star 2 times. For graphs of catwidth 2 we may guess that there are many
minimal forbidden minors, just as for pathwidth 2 where there are over 100
[14]. Deciding if a tree T has catwidth (and hence also spacewidth) 1 is
easily done in linear time, but for higher values of these parameters giving
an explicit such algorithm is left for future work. For an AT-free graph G, we
have tw(G) = pw(G) [16], so also tw(G) = spacew(G) = catw(G) = pw(QG).
In [4] it is shown that determining treewidth is NP-hard for co-comparability
graphs (although the authors did not use this terminology for their graph
class). Since co-comparability graphs are AT-free and thus have treewidth
equal to pathwidth, we have:

Corollary 4 Determining the catwidth or spacewidth of a cocomparability
graph is NP-hard.

6 Conclusion

Based on the observation that algorithms on graphs of small treewidth are
faster if tables fit into memory, we have introduced two parameters related
to pathwidth and treewidth, called catwidth and spacewidth. The catwidth
parameter led naturally to the definition of the class of catval graphs, and to
the extended asteroidal triples.

Various further questions related to these notions should be studied. A very
recent result [13] gives a linear-time algorithm for recognizing catval graphs.
On the practical side we have already in the introduction mentioned that
experimentation should be carried out in order to evaluate the importance of
these observations. Various other issues, in analogy with results on pathwidth
and treewidth, as well as interval and chordal graphs, and also asteroidal
triples, are also open for further investigations.
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